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INTRODUCTION

Classical structural reliability assessment techniques are based on precise and crisp (sharp)
definitions of failure and non-failure (survival) of a structure in meeting a set of strength, function and
serviceability criteria. These definitions are provided in the form of performance functions and limit
state equations. Thus, the criteria provide a dichotomous definition of what real physical situations
represent, in the form of abrupt change from structural survival to failure. However, based on
observing the failure and survival of real structures according to the serviceability and strength criteria,
the transition from a survival state to a failure state and from serviceability criteria to strength criteria are
continuous and gradual rather than crisp and abrupt. That is, an entire spectrum of damage or failure
levels (grades) is observed during the transition to total collapse. In the process, serviceability criteria
are gradually violated with monotonically increasing level of violation, and progressively lead into the
strength criteria violation. Classical structural reliability methods correctly and adequately include the
ambiguity sources of uncertainty (physical randomness, statistical and modeling uncertainty) by
varying amounts. However, they are unable to adequately incorporate the presence of a damage
spectrum, and do not consider in their mathematical framework any sources of uncertainty of the
vagueness type. Vagueness can be attributed to sources of fuzziness, unclearness, indistinctiveness,
sharplessness and grayness; whereas ambiguity can be attributed to nonspecificity, one-to-many
relations, variety, generality, diversity and divergence. Using the nomenclature of structural reliability,
vagueness and ambiguity can be accounted for in the form of realistic delineation of structural damage
based on subjective judgment of engineers. For situations that require decisions under uncertainty with
cost/benefit objectives, the risk of failure should depend on the underlying level of damage and the
uncertainties associated with its definition. A mathematical model for structural reliability assessment
that includes both ambiguity and vagueness types of uncertainty was suggested to result in the
likelihood of failure over a damage spectrum. The resulting structural reliability estimates properly
represent the continuous transition from serviceability to strength limit states over the ultimate time
exposure of the structure. In this section, a structural reliability assessment method based on a fuzzy
definition of failure is suggested to meet these practical needs. A failure definition can be developed to
indicate the relationship between failure level and structural response. In this fuzzy model, a subjective
index is introduced to represent all levels of damage (or failure). This index can be interpreted as either
a measure of failure level or a measure of a degree of belief in the occurrence of some performance
condition (e.g., failure). The index allows expressing the transition state between complete survival
and complete failure for some structural response based on subjective evaluation and judgment.
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STRUCTURAL RELIABILITY ASSESSMENT

The reliability of an engineering system can be defined as its ability to fulfill its design purpose
for some time period. The theory of probability provides the fundamental basis to measure this ability.
The reliability of a structure can be viewed as the probability of its satisfactory performance according
to some performance functions under specific service and extreme conditions within a stated time
period. In estimating this probability, system uncertainties are modeled using random variables with
mean values, variances, and probability distribution functions. Many methods have been proposed for
structural reliability assessment purposes, such as First-Order Second Moment (FOSM) method,
Advanced Second Moment (ASM) method, and computer simulation (Refs. 2 and 4). In this section,
two probabilistic methods for reliability assessment are described. They are 1) advanced second
moment (ASM) method, and 2) Monte Carlo Simulation (MCS) method with Variance Reduction
Techniques (VRT) using Conditional Expectation (CE) and Antithetic Variates (AV).

Advanced Second Moment (ASM) Method

The reliability of a structure can be determined based on a performance function that can be
expressed in terms of basic random variables X/'s for relevant loads and structural strength.
Mathematically, the performance function Z can be described as

Z= Z(X,, X;..., X, = Structural strength - load effect (1)

where Z is called the performance function of interest. The failure surface (or the limit state) of interest
can be defined as Z=0. Accordingly, when Z < 0, the structure is in the failure state, and when Z > 0

it is in the safe state. If the joint probability density function for the basic random variables X/'s is

f=Z, o . (x,, Xoyeees x,,) , then the failure probability P, of a structure can be given by the integral

Pf:_[ f A (xl,xz,..., xn) dxdx,... dx, (2)

where the integration is performed over the region in which Z < 0. In general, the joint probability
density function is unknown, and the integral is a formidable task. For practical purposes, alternate

methods of evaluating P, are necessary.

Reliability Index (Safety Index)

Instead of using direct integration as given by Eq. 2, the performance function Z in Eq. 1 can be
expanded using a Taylor series about the mean value of X's and then truncated at the linear terms.
Therefore, the first-order approximate mean and variance of Z can be shown, respectively, as

z2=7(%, X,... X,) (3)
and
ol= ; ,g (Ba%) (38%) Cov(X,-, X,) 4)



where Cov(X,, X,-) is the covariance of X, and X, ; Z = mean of Z; and 6> = variance of Z. The partial

derivatives of 0Z/dX, are evaluated at the mean values of the basic random variables. For statistically
independent random variables, the variance expression can be simplified as

1% 2 [0Z )
o-z - ,.; G,x, (BT]) (5)
A measure of reliability can be estimated by introducing the reliability index or safety index B that is
based on the mean and standard deviation of Z as

B= (6)

If Z is assumed to be normally distributed, then it can be shown that the failure probability P, is

P,=1-d(B) (7)
where @ = cumulative distribution function of standard normal variate.

The aforementioned procedure of Eqs. 3 to 7 produces accurate results when the random
variables are normally distributed and the performance function Z is linear.

Nonlinear Performance Functions

For nonlinear performance functions, the Taylor series expansion of Z is linearized at some
point on the failure surface called design point or checking point or the most likely failure point rather

than at the mean. Assuming the original basic variables X/'s are uncorrelated, the following
transformation can be used:

X,"‘X
Y= G,

i

(8)

If X/'s are correlated, they need to be transformed to uncorrelated random variables, as described by

Thrift-Christensen and Baker (Ref. 33) or Ang and Tang (Ref. 2). The safety index P is defined as the
shortest distance to the failure surface from the origin in the reduced Y-coordinate system. The point
on the failure surface that corresponds to the shortest distance is the most likely failure point. Using the

original X-coordinate system, the safety index B and design point (X . SR, ¢ ,,) can be determined by

solving the following system of nonlinear equations iteratively for B:

0Z
(3%)o
a; = " R 172 €
L%
X =X-oapo, (10)
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z (X}, X; ... X;)=0 (11

where o, = directional cosine; and the partial directives are evaluated at design point. Then, Eq. 7 can

be used to evaluate P,. However, the above formulation is limited to normally distributed random
variables.

Equivalent Normal Distributions

If a random variable X is not normally distributed, then it needs to be transformed to an
equivalent normally distributed random variable. The parameters of the equivalent normal distribution
XV and o, can be estimated by imposing two conditions (Refs. 27 and 28). The cumulative
distribution functions and probability density functions of a non-normal random variable and its
equivalent normal variable should be equal at the design point on the failure surface. The first condition
can be expressed as

X -xV )
o '):Fi(x,) (12a)
Oy,
The second condition is
X -xV .
¢>( ; )=ﬁ(X.-) (12b)
O'X,

where F, = non-normal cumulative distribution function; f = non-normal probability density function;

& = cumulative distribution function of standard normal variate; and¢ = probability density function
of standard normal variate. The standard deviation and mean of equivalent normal distributions can be
shown, respectively, to be

Oy, = : (13)

and
=X - [F,. (X:)]o’}i (14)

Having determined o and XY for each random variable, B can be solved using the same procedure of
Egs. 9 to 11.

The advanced second moment method is capable of dealing with nonlinear performance
functions and non-normal probability distributions. However, the accuracy of the solution and the
convergence of the procedure depends on the nonlinearity of the performance function in the vicinity of
design point and the origin. If there are several local minimum distances to the origin, the solution
process may not converge onto the global minimum. The probability of failure is calculated from the

safety index B using Eq. 7 which is based on normally distributed performance functions. Therefore,



the resulting failure probability P, based on the ASM is approximate except for linear performance
functions because it does not account for any nonlinearity in the performance functions.

SOURCES AND TYPES OF UNCERTAINTY

The following two viewgraphs show example sources of uncertainty, and a classification of
uncertainty types.

OBJECTIVES

The objectives of this presentation were to generalize structural reliability assessment methods
to account for ambiguity and vagueness sources of uncertainty, and demonstrate the developed methods
using ship structures. A viewgraph is provided with a statement of objectives.

Models and methods for merging different uncertainty sources in structural reliability
assessment were described. The methods were presented in a finite element analysis framework.
Also, intelligence in reliability computations with applications to marine vessels were discussed.

133



OBJECTIVES

 Develop methods for structural reliability
assessment based on a generalized treatment of
uncertainty.

e Define failure events over a damage spectrum.

* Provide the reliability of the structure over the
damage spectrum.
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METHODOLOGY

The following figure shows a procedure for an automated failure classification that can be
implemented in a simulation algorithm for reliability assessment for ship structures as an example. The
failure classification is based on matching a deformation or stress field with a record within a
knowledge base of response and failure classes. In cases of no match, a list of approximate matches is
provided, with assessed applicability factors. The user is prompted for any changes to the approximate
matches and their applicability factors. In the case of a poor match, the user has the option of activating
the failure recognition algorithm shown in the next figure to establish a new record in the knowledge
base. The adaptive or neural nature of this algorithm allows the updating of the knowledge base of
responses and failure classes. The failure recognition and classification algorithm shown in the figure
evaluates the impact of the computed deformation or stress field on several systems of a structure. The
impact assessment includes evaluating the remaining strength, stability, repair criticality, propulsion
and power systems, combat systems, and hydrodynamic performance. The input of experts in ship
performance is needed to make these evaluations using either numeric or linguistic measures. Then, the
assessed impacts need to be aggregated and combined to obtain an overall failure recognition and
classification within the established failure classes. The result of this process is then used to update the
knowledge base.

The development of a methodology for the reliability assessment of continuum ship structural
components or systems requires the consideration of the following three components: (1) loads, (2)
structural strength, and (3) methods of reliability analysis. Also, the reliability analysis requires
knowing the probabilistic characteristics of the operational-sea profile of a ship, failure modes, and
failure definitions. A reliability assessment methodology can be developed in the form of the following
modules: operational-sea profile and loads; nonlinear structural analysis; extreme analysis and
stochastic load combination; failure modes, their load effects, load combinations, and structural
strength; library of probability distributions; reliability assessment methods; uncertainty modeling and
analysis; failure definitions; and system analysis. Each module can be independently investigated and
developed, although some knowledge about the details of other modules is needed for the development
of amodule. These modules are described by Ayyub, Beach and Packard (Ref. 6).

Prediction of structural failure modes of continuum ship structural components or systems
requires the use of nonlinear structural analysis. Therefore, failure definitions need to be expressed
using deformations rather than forces or stresses. Also, the recognition and proper classification of
failures based on a structural response within the simulation process need to be performed based on
deformations. The process of failure classification and recognition needs to be automated in order to
facilitate its use in a simulation algorithm for structural reliability assessment. The first figure shows a
procedure for an automated failure classification that can be implemented in a simulation algorithm for
reliability assessment. The failure classification is based on matching a deformation or stress field with
a record within a knowledge base of response and failure classes. In cases of no match, a list of
approximate matches is provided with assessed applicability factors. The user can then be prompted
for any changes to the approximate matches and their applicability factors. In the case of a poor match,
the user can have the option of activating the failure recognition algorithm shown in the second figure to
establish a new record in the knowledge base. The adaptive or neural nature of this algorithm allows
the updating of the knowledge base of responses and failure classes. The failure recognition and
classification algorithm shown in the figure evaluates the impact of the computed deformation or stress
field on several systems of a ship. The impact assessment includes evaluating the remaining strength,
stability, repair criticality, propulsion and power systems, combat systems, and hydrodynamic
performance. The input of experts in ship performance is needed to make these evaluations using either
numeric or linguistic measures. Then, the assessed impacts need to be aggregated and combined to
obtain an overall failure recognition and classification within the established failure classes. The result
of this process is then used to update the knowledge base.
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A prototype computational methodology for reliability assessment of continuum structures
using finite element analysis with instability failure modes is described in this report. Examples were
used to illustrate and test the methodology. Geometric and material uncertainties were considered in the
finite element model. A computer program was developed to implement this methodology by
integrating uncertainty formulations to create a finite element input file, and to conduct the reliability
assessment on a machine level. A commercial finite element package was used as a basis for the
strength assessment in the presented procedure. A parametric study for a stiffened panel strength was
also carried out. The finite element model was based on the eight-node doubly curved shell element,
which can provide the nonlinear behavior prediction of the stiffened panel. The mesh was designed to
ensure the convergence of eigenvalue estimates. Failure modes were predicted on the basis of elastic
nonlinear analysis using the finite element model.

Reliability assessment was performed using Monte Carlo simulation with variance reduction
techniques that consisted of the conditional expectation method. According to Monte Carlo methods,
the applied load was randomly generated, finite element analysis was used to predict the response of the
structure under the generated loads in the form of a deformation field. A crude simulation procedure
can be applied to compare the response with a specified failure definition, and failures can then be
counted. By repeating the simulation procedure several times, the failure probability according to the
specified failure definition is estimated as the failure fraction of simulation repetitions. Alternatively,
conditional expectation was used to estimate the failure probability in each simulation cycle in this
study; then the average failure probability and its statistical error were computed.

The developed method is expected to have significant impact on the reliability assessment of
structural components and systems; more specifically, the safety and reliability evaluation of continuum
structures, the formulation of associated design criteria, evaluation of important variables that influence
failures, the possibility of revising some codes of practice, reducing the number of required costly
experiments in structural testing, and the safety evaluation of existing structures for the purpose of life
extension. The impact of this study can extend beyond structural reliability into the generalized field of
engineering mechanics.



STRUCTURAL RELIABILITY ASSESSMENT

The general performance function of a
structural component or system according to a
specified performance criterion is expressed as
follows:

Z = strength - load effect

Z = g(X1, X3, Xn)

where X; = basic random variable
g(-) > 0: survival event
g(*) = 0: limit state
g(-) < 0: failure event
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The probability of failure is determined by
solving the following integral:

Pr= | [ | fx(X1,X2,0++,Xp) dxqdg---dxy

where f is the joint probability density function of
X = {X1,X3,°*,X,) and the integration is performed over
the range where g(-) < 0
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UNCERTAINTIES

I. Ambiguity: (1)
(2)
(3)

II. Vagueness: (1)
(2)

Physical randomness
Statistical uncertainty
Model uncertainty

Definition of parameters

Inter-relationships among the
parameters
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CRISP FAILURE MODEL

Only two basic, mutually exclusive events,
complete survival and complete failure, are
considered, i.e.,

U — {0, 1}

where U = the universe of all possible outcomes
0 = failure level of the event complete
survival
1 = failure level of the event complete
failure



Failure Level, o

complete 1.0
failure

complete 0.0
. R
survival f

Structural Response, R
(e.g., curvature, deflection, etc.)

R¢ = structural response at failure
R < R¢ (0=0) : complete survival

R = R¢ : limit state
R > R (0=1) : complete failure
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FUZZY (CONTINUOUS) FAILURE MODEL

A subjective index, failure level a, is introduced to
represent the intermediate levels of damage, i.e.,

U-> A={a:ae [0,1]}

where U = the universe of all possible outcomes
o = 0 : complete survival

0 < o < 1 : partial failure
o = 1 : complete failure

o can be interpreted as the degree of belief of a
failure condition.



Failure Level, o

complete 1.0
failure

I

|

|

I

I

I

I
complete (.0 1
survival R, R,

Structural Response, R
(e.g., curvature, deflection, etc.)

R = lower bound of structural response
R, = upper bound of structural response
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Degree of Belief of an Event, o

1.0

0.0

Structural Response, R
(e.g., curvature, deflection, etc.)

Event Number

Definition

1

A U bW

complete survival

low serviceability failure
serviceability failure

high serviceability failure
partial collapse

complete collapse




If definitions of failure events are interpreted as "at
least low serviceability failure, serviceability
failure, -, or complete collapse,”" the above figure

is modified to

Degree of Belief of an Event, o

0.0

Structural Response, R
(e.g., curvature, deflection, etc.)
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STRUCTURAL PERFORMANCE CURVE

Resisting Moment (ft-tons)

l  ——
400000 [~ - -r---F---rEC-F
| '
Hogging M ===
I I
200000 - -~ - T~ r—- -~
|
|
I
0 l
P |
: |
i Sagging Morhent
-200,000 [~ 71 ~ “F-——r——-
e !
| !
-0.8 -0.4 0.0 04 0.8

Curvature ¢ (x 107 )



CRISP FAILURE MODEL
FOR STOCHASTIC M-® RELATIONSHIP

Curvature (¢)

| q)f
I

~— » Moment (M)
1.0 0.0

> Load (L)
Failure
Level (o) '\/

f

L

fi, = probability density function (pdf) of L
fm = conditional pdf of M at ¢ = ¢5
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The probability of failure is evaluated as

Pe =Prob{a=1}

= Prob { L > (M at ¢ = ¢p) }

[ Prob{L > (mat¢=¢p)} fpm(m)dm
0

(o]

[ {1-FL(m)} fy(m)d m
0

where F, = cumulative distribution function of L
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FUZZY FAILURE MODEL
FOR STOCHASTIC M-® RELATIONSHIP

Curvature (¢)

» Moment (M)

: : ™ L.oad (L)
Failure \/
Level (o) '

i

fi. = probability density function (pdf) of L
fmM = conditional pdf of M at ¢ = ¢5
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The probability of failure is evaluated as

Pt (o) = Prob { Zlo=0s< 0}

= Prob { M(¢s) - L < 0}
= | Prob{L>(mat¢=¢p)}fm(m)dm
0

= [{1-FrL(m)} fm(m)d m
0

where F|, = cumulative distribution function of L
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AVERAGE PROBABILITY OF FAILURE

I. Crisp Failure Model:
Ps, avg = Pg

II. Fuzzy Failure Model:

* Arithmetic average:

1
| Pe(or) da
Ps 0

a

= 1

[da

0

* Geometric average:

1

[ log1p (Pr(v)) dat

0
log1o(Pg,) = i

[da
0
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EXAMPLE I

Consider the following performance function:

Z=M-L=M®)-L

where M = resisting moment (ft-tons)
L = external load (ft-tons)
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* Crisp Failure Model

The curvature at failure is specified as

o = 0.30 x 10-5

The statistical characteristics of external moment
(L) and resisting moment (Mj):

Coefficient
Random Mean Value of Variation Probability
Variable (COV) Distribution Type
S— =====%
L 100x103 ft-tons 0.30 Extreme Value Type I
My 244x103 ft-tons 0.10 Normal
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* Fuzzy Failure Model

Failure Level (o)

1.0

'II/
i

0.0
0.2 0.25 0.275 0.325 0.35 0.4

-5
Curvature ¢ (x 10 )
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

Failure Level ( )

60
A \
i 50
<
o
®
~ 40
&
2 R
= 30
o \ w==O==  Fuzzy Failure-(1)
5 sgdy= Fuzzy Failure-(2)
> 20 \ === Fuzzy Failure-(3)
= \ s=sOu2t  Crisp Failure
=
~
£
©
| =
(-

The values of Py were calculated using 1000 simulation cycles.
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Fuzzy Failure-(1)
Fuzzy Failure-(2)
Fuzzy Failure-(3)
Crisp Failure
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The values of Py were calculated using 1000 simulation cycles.




0.005

@ 0004
=
=
[
«  0.003
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>
=
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«
=
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-

0.001
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fH

Failure Level = 0.2
Failure Level = 0.4
Failure Level = 0.6
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Failure Level = 1.0

j
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Number of Simulation Cycles
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cov(p ¢)

0.30
0.25 1
0.20 \
“=® Failure Level = 1.0
0.15 == Failure Level = 0.8
) \ ==& Failure Level = 0.6
v at == Failure Level = 0.4
0.10 ™~ —e— Failure Level = 0.2
[ —
P
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Average

Probability of Failure for Example I

Arithmetic Geometric
Failure Curvature at Failure Average of | Average of
Model Of Probability | Probability

of Failure of Failure
Fuzzy 1 0.2x10-5 to 0.4x10-5 9.137x10-3 | 2.320x10-3
Fuzzy 2 0.25x10-5 to 0.35x10-5 2.752x10-3 1.851x10-3
Fuzzy 3 | 0.275x10-5 to 0.325x10-5 | 2.086x10-3 1.854x10-3
Crisp 0.3x10-5 1.973x10-3 | 1.973x10-3
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EXAMPLE II - CASE A

serviceability failure high serviceability failure
low serviceability failure partial collapse
complete survival complete collapse

Degree of belief
of an event (o)
0.19 0.236 ¢ 0.240 0.26 0.33 {034\ 0.36 0.37 {039
1.0
0216 0.24 0.26 032 034 036 038 0.39

Curvature ¢ (x 10 -5)



1.0 [oe— E N
— 0.8 - g
3 [
A 3.4
3 [
2
> 0.6 g
[==]
Comt - naasariassdoas
=]
%]
b 04
| ]
o0
%]
2

{1

Event 1
Event 2
Event 3
Event 4
Event 5
Event 6

;

0.0 X
.0001 001 .01

Probability of Failure Occurrence

The values of Py were calculated using 1000 simulation cycles.
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Average Probability of Occurrence - Case A

Arithmetic Average

Geometric Average

Event Definition of Probability of Probability
No. of Occurrence of Occurrence
1 complete survival 0.940 0.940
2 | low serviceability 1.611x10-2 1.583x10-2
failure
3 serviceability 8.718x10-3 8.396x10-3
failure
4 |high serviceability | 4 9445710-4 4.782x10-4
failure
5 partial collapse 1.439x10-4 1.424x10-4
6 complete collapse 2.847x10-4 2.846x10-4




EXAMPLE II - CASE B

serviceability failure
low serviceability failure

complete survival

Degree of belief

of an event (o)

1.0

0.0

0.19

0.21

high serviceability failure
partial collapse

complete collapse

0.236\ 0.26 0.33 0.36 0.39
0.24 0.31 0.34 0.38

Curvature ¢ (x 10 -5)
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1.0
- 0.8 1]
3 | 4
‘> 0.6 mi === Eventl
= =" Event2
-] -4 mefy== Event3
“ P‘ mmgpe=  Event 4
o 0.4 === EventS5
ot ==y Event 6
-11]
@
= 0.2 :
0.0 Ay
0001 .001 .01 .1

Probability of Failure Occurrence

The values of Py were calculated using 1000 simulation cycles.
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Average Probability of Occurrence - Case B

Arithmetic Average| Geometric Average
E
vent Definition of Probability of | of Probability of
No.
Occurrence Occurrence
1 complete survival 0.940 0.940
2 | low serviceability | 5 g19470-2 2.555x10-2
failure
3 serviceability 1.008x10-2 9.722x10-3
failure
4 |high serviceability | ¢ 3gg,7¢-4 9.206x10-4
failure
5 partial collapse 4.444x10-4 4.424x10-4
6 complete collapse |  2.847x10-4 2.846x10-4
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UNCERTAINTY MEASURES

 Hartley Measure: Set theory

* Shannon Entropy: Probability theory

*  Measure of Fuzziness: Fuzzy set theory

« U-Uncertainty: Possibility theory
 Measure of Dissonance: Theory of evidence

»  Measure of Confusion: Theory of evidence
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UNCERTAINTY MEASURES

A 8 C D E F G
1 _|[Uncertainty measure{ Type ol uncertainty [Type ol sets or svenly Theory type Comments Uncertainty range| Reterance
| 2 ] A basic discrete measure.
| I3 ] Hartlay ambiguity crisp set A larger number ol outcomes [0,o=} Hartley (1928}
4 means larger uncertainty
5 | seot The closer the outcomes
8 Shannon Entropy ambiguity crisp and to an equal liklihood, the [0,e=) Shannon [1948)
7] probability larger the uncertainty
3 set Possibilistic counterpart
I U-uncertainty ambiguity crisp and to Shannon entropy and {0,=) Higashi and Klir [1983)
10 possibility generalization 1o Hartlay
(11| measure
[ 12 vaguenass set Measures the lack of Oeluca and Termini
13 | Fuzziness measure and tuzzy and dislinction batween a set [0.=) [1972,1974.1977)
(14 ambiguity fuzziness and its complement
15 conilict sot Measuras conllict of
E Dissonance measure and crisp and evidence using theory of {0,0) Yager [1983]
17 ambiguity avidence avidence
18 conlusion set Measures conlusion ot
19| Conlusion measure and crisp and svidence using theory of [0,) Hohle [1981)
(20| amblquity evidence evidence
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L04=790mn

X L02=790mm
Lol \/

STIFFENED PANEL

Assumptions: b01 = LO1 / 4.666667 b03 = LO3 / 4.666667

Stiffened Panel (dimensions and assumptions)




ABAQUS

Finite Element Mesh of the Stiffened Panel
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LI, L132, L1335, L1354, L13S

Web Height Variability and Web Tilting
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WEB BOWING (LEVELS =0,1,and 2)

TEN GENERATED RANDOM VARIABLES: XBOl,XB0o2,XB03, XBo4, XBOS

Web Bowing
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Lo3uedarm

o

wad

FLANGE TILTING (LEVEL-Y)

TEMGENERATED RANDOM VARIABLES: ZIV8 2228 2100 1240 2239
Z2IL. 22302250, Z34L, 228L

ASSUMPTIONS: WED MEETS FLANGE ATITS MIDWIDTH

FLANGE WIDSR (LEVEL-])

TEN GENERATED RANDOM YARIABLES: LItH LI, L300 L2010 L1
LISL LIS, L3S L2304 L3S

Flange Width Variability and Flange Tilting
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Methodology for ith Simulation Cycle
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Simulation cycle
C-Shell script file
(i-th cycle, Machine

Prepare Files
(FACTOR, EIGENV, PFAIL,

SUMPS{, SUMPIR2, STRENGTH,

Pf, cycle)
Level) @
y
Delete previous Finite
Element-output files

y
Write load Create FE-input file and
parameter calculate related parameters
(FACTOR) (Run Panel)

\

Probability
Distributions
library

4
Read load data
distribution type, mean and |
variance

Wrile statistics

Run Finite Element
General Purpose
Program

Read in FE-output
(Run Grep)

Write
eigenvalues

Select, e. g., smallest
eigenvalue,
calculate strength, and
probability of failure
(Run Strength)

Write
strength and
probability of failure

Compute Statistics

(SDPf, COVPf)

(SDPf, COVPI)

Update files
(SUMPS, SUMPf2)

C-Shell Script Flow Chart for ith Simulation Cycle-Machine Level
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Geometric And Material Random Variables for the Stiffened Panel

Variable Geometrical variables Notation Mean value Coefficient of Standard

o variation deviation
(COV)
1 Plate size (mm) LOi 854 4.0
2 Plate thickness (mm) o 3.0 4% 0.12
3 Web thickness (mm) U 49 4% 0.196
4 Flange thickness (mm) ty 5.84 4% 0.234
5 Plate-out of plane distortion zPOi 0.0 1.0
(mm)

6 Web height (mm) L1ji 31.08 25% 0.77
7 Web tilting (mm) X2ji 0.0 0.5
8 Web bowing (mm) XBOi 0.0 0.1
9 Flange width (mm) L2j 254 2.5% 0.635
10 Flange tilting (mm) Z2i0, Z2iL 0.0 0.2
11 Modulus of elasticity (MPa) E 208000 4% 8320
12 Poisson’s ratio v
13 Yield stress (KPa)' F 250000 7% 17500

' Nominal yield stress = 240000 kPa
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Thicknesses and Plate Geometric Variables

Variable no. Geometrical variables Notation Mean value Coefficient Standard
(mm) of variation deviation
(COV) (mm)
global local
1 1 Panel width (side 1) Lo 854.0 4.0
2 2 Panel width (side 3) Loz 854.0 4.0
3 3 Plate thickness tp 3.0 4% 0.12
4 4 Web thickness (™ 49 4% 0.196
5 5 Flange thickness t 5.84 4% 0.234
6 6 Plate-out of plane distortion Zroz 0.0 1.0
(corner2)
7 7 Plate-out of plane distortion Zpos 0.0 1.0
(corner3)
8 8 Plate-out of plane distortion Zpos 0.0 1.0
(corner4)
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Web Height Variables

Variable no. Geometrical variables Notation Mean value Cocfficient of Standard
(mm) variation deviation (mm)
(COV)
global | tocal

9 | Height of web no. 1 (side 1) Ly 31.08 2.5% 0.77
10 2 Height of web no. 2 (side 1) Lz 31.08 2.5% 0.77
11 3 Height of web no. 3 (side 1) L 31.08 2.5% 0.77
13 4 Height of web no. 4 (side 1) L 31.08 2.5% 0.77
14 5 Height of web no. 5 (side 1) Lis 31.08 25% 0.77
15 6 Height of web no. [ (side 3) L3 31.08 2.5% 0.77
16 7 Height of web no .2 (side 3) L 31.08 2.5% 0.77
17 8 Height of web no.3 (side 3) Ly 31.08 2.5% 0.77
18 9 Height of web no.4 (side 3) Ly 31.08 2.5% 0.77
19 10 Height of web no.5 (side 3) Lias 31.08 2.5% 0.77
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Web Tilting Variables

Variable no. Geometrical variables Notation | Mean value Coefficient of | Standard deviation
(mm) variation (mm)
(COV)
global | local
20 1 Tilting of web no.1 (side 1) Xan 0.0 0.5
21 2 Tilting of web no.2 (side 1) Xonz 0.0 0.5
22 3 Tilting of web no.3 (side 1) X3 0.0 0.5
23 4 Tilting of web no.4 (side 1) X4 0.0 0.5
24 5 Tilting of web no.5 (side 1) X215 0.0 0.5
25 6 Tilting of web no.1 (side 3) Xom 0.0 0.5
26 7 Tilting of web no.2 (side 3) Xa32 0.0 0.5
27 8 Tilting of web no.3 (side 3) X233 0.0 05
28 9 Tilting of web no.4 (side 3) X34 0.0 0.5
29 10 Tilting of web no.5 (side 3) X35 0.0 0.5
Web Bowing Variables
Variable no. Geometrical variables Notation Mean value Coefficient Standard
{mm) of variation | deviation (mm)
(COV)
global local
45 1 Bowing of web no. | (side 3) Xgo1 0.0 0.1
46 2 Bowing of web no. 2 (side 3) Xpo2 0.0 0.1
47 3 Bowing of web no. 3 (side 3) Xgo3 0.0 0.1
48 4 Bowing of web no. 4 (side 3) Xpos 0.0 0.1
49 5 Bowing of web no. 5 (side 3) XBgos 0.0 0.1




Flange Width Variables

Variable no. Geometrical variables Notation Mean value | Coefficient of Standard
(mm) variation deviation (mm)
(CoVy
global local
30 1 Width of flange no. | (side 1) Loy 254 2.5% 0.635
31 2 Width of flange no. 2 ( side 1) Ly 254 2.5% 0.635
32 3 Width of flange no.3 ( side 1) Lo 25.4 2.5% 0.635
33 4 Width of flange no. 4 ( side 1) Ly 254 2.5% 0.635
34 5 Width of flange no. 5 ( side 1) | P 254 2.5% 0.635
35 6 Width of flange no.1 ( side 3) Ly, 254 2.5% 0.635
36 7 Width of flange no.2 ( side 3) L 254 2.5% 0.635
37 8 Width of flange no.3 ( side 3) L3 254 25% 0.635
38 9 Width of flange no.4 ( side 3) L34 254 2.5% 0.635
39 10 Width of flange no.5 ( side 3) Ljss 254 2.5% 0.635
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Flange Tilting Variables

Vanable no. Geometrical variables Notation Mean value | Coefficient of Standard
(mm) variation deviation
(COV) (mm)
global | local
40 I Tilting of flange no.1 (side 1) Zno 0.0 0.2
41 2 Tilting of flange no.2 (side 1) Zan 0.0 0.2
42 3 Tilting of flange no.3 (side 1) Zay 0.0 0.2
43 4 Tilting of flange no.4 (side 1) Zoso 0.0 0.2
44 5 Tilting of flange no.5 (side 1) Zyso 0.0 0.2
45 6 Tilting of flange no.1 (side 3) ZonL 0.0 0.2
46 7 Tilting of flange no.2 (side 3) Zyy 0.0 0.2
47 8 Tilting of flange no.3 (side 3) Zyy 0.0 0.2
48 9 Tilting of flange no.4 (side 3) Zyy 0.0 0.2
49 10 Tilting of flange no.5 (side 3) Zys1 0.0 0.2




Material Variability

Variable no. Material variables Notation Mean Coefficient of Standard
value variation (COV) deviation
global local

50 1 Modulus of elasticity of Ep 208000 4% 8320
plate material (MPa)

51 2 Modulus of elasticity of web E, 208000 4% 8320
matenal (MPa)

52 3 Modulus of elasticity of E, 208000 4% 8320
flange material (MPa)

53 4 Poisson's ratio of plate Vo

54 5 Poisson's ratio of web Vi

55 6 Poisson's ratio of flange \Z

56 7 Yield stress of plate (kPa) ! Fyo 250000 7% 17500

57 8 Yield stress of web (kPa) ' Fyi 250000 7% 17500

57 9 Yield stress of flange (kPa) ' F,, 250000 7% 17500

" Nominal yield stress = 240000 kPa
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ABAQUS

Buckling Shape of the Stiffened Panel
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Staustical Measures

Axual Sumgtﬂ
Mean 273.9064
Standard Error 0.933275
Median 272.1663
Standard Dewiation 20.86865
Sample Vanance 435.5007
Kurtosis 0.031126
Skewness 0.278253
Range 121.3818
Minimum 219.5003
Maximum 340.8821
Sum 136953.2
Count 500
Confidence Level(95%) 1.829182
Statisical Measures Normalized W

Axia) Strength|
Mean 1.00221868
Standard Error 0.00341484
Median 0.99585163
Standard Dewviation 0.07635806
Sample Vanance 0.00583055
Kurtosis 0.03112581
Skewness 0.27825334
Range 0.44413392
Minimum 0.80314782
Maximum 1.24728174
Sum 501.109341
Count 500
Confidence Level(95%) | 0.006692946

Asial Strength-500 cycles, Average = 273.9 (MPa)
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Axial Strength Statistics of the Stiffened Panel-500 Cycles
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Convergence of Average Probability of Failure
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Number of Cycles
Statistical Measures Probability
of Failure Probability of Failure-500 cycles, Average = 4.3E-4
Mean 0.000431
Standard Error 8.83E-05 1o
Median 1.83E-05 2ox
Standard Devistion 0.001973 oo
Sample Vanance 3.89E-06 E 0%
Kurtosis 104.3945 & sox
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Probability of Failure Statistics of the Stiffened Panel-500 Cycles




Poaltive pressare T

STIFFENED PANEL SUBJECTED TO LATERAL PRESSURE

Axial Strength (MPa)

Stiffened Panel Subjected to Lateral Pressure
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PARAMETRIC ANALYSIS

A parametric analysis was conducted for the axial strength and failure probability of the panel.
The analysis was carried out by individually varying the coefficients of vanation or standard deviations
of the basic random variables. The notations, mean values, and ranges of COV and standard deviations
of the random variables are given in the following table. The following observations were developed
based on the results of the parametric analysis using 100 simulation cycles:

* For the plate width, a figure shows that increasing the COV from 0.47% to 0.94%, the normalized
strength decreases from 1.007 to 0.988, the COV of the axial strength decreases from 8.87% to

7.79%, and the average of probability of failure decreases from 8.20 x 104 to 6.45 x 104.

* For the plate-out of plane distortion, a figure shows that increasing the standard deviation from 1.0 to
3.0, the normalized strength increases from 1.007 to 1.009, the COV of the axial strength decreases

from 8.87% to 7.42%, and the average of probability of failure decreases from 8.20 x 10-4 to 6.45 x
10-4.

* For the web height, a figure shows that increasing the COV from 2.5% to 5.0%, the normalized
strength increases from 1.007 to 1.011, the COV of the axial strength decreases from 8.87% to

7.37%, and the average of probability of failure decreases from 8.20 x 10 to 3.94 x 10-4,

* For the web tilting, a figure shows that increasing the standard deviation from 0.2 mm to 0.5 mm, the
normalized strength increases from 1.005 to 1.007, the COV of the axial strength increases from

7.17% to 9%, and the average of probability of failure increases from 5.0 x 10-4 to 8.45 x 10-4.

* For the web bowing, a figure shows that increasing the standard deviation from 0.1 mm to 0.2 mm,
the normalized strength decreases from 1.007 to 0.99, the COV of the axial strength decreases from

9.0% to 7.8%, and the average of probability of failure decreases from 8.20 x 104 to 4.84 x 10-4.

* For the flange width, a figure shows that increasing the COV from 2.5% to 5.0%, the normalized
strength decreases from 1.007 to 1.004, the COV of the axial strength decreases from 9.0% to

7.26%, and the average of probability of failure decreases from 8.20 x 10-4 to 2.23 x 104

* For the flange tilting, a figure shows that increasing the standard deviation from 0.2 mm to 0.5 mm,
the normalized strength decreases from 1.007 to 0.995, the COV of the axial strength decreases from

9.0% to 8.0%, and the average of failure probability increases from 8.20 x 10-4 to 1.77 x 10-3.

* For the thicknesses, a figure shows that increasing the COV from 4.0% to 8.0%, the normalized
strength decreases from 1.007 to 0.994, the COV of the axial strength increases from 8.87% to

13.0%, and the average of probability of failure decreases from 8.28 x 104 to 1.53 x 10-2,

*» For the modulus of elasticity, a figure shows that increasing the COV from 4.0% to 8.0%, the
normalized strength decreases from 1.007 to 1.002, the COV of the axial strength remains constant at

the value of 8.90%, and the average of probability of failure decreases from 8.20 x 10-4 to 1.49 x
10-3.

The above failure probability observations were based on results from 100 simulation cycles.
The number of simulation cycles might not be adequate for obtaining accurate failure probability
results, but it is sufficient for determining the axial strength. The number of cycles was limited to 100
in order to make the study feasible within the planned time frame of the project.



A table shows a summary of the results of the parametric study. According to the table,
variations in the variability of plate size and web bowing produced the largest effect on the mean axial
strength ratio; whereas variations in the variability of thicknesses of the plate, webs, and flanges
produced the largest effect on the coefficient of variation of the axial strength.
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Variation of Coefficient of Variation or Standard Deviation

Variable|  Geometrical variables Notation Mean value Coefficient of Standard deviation
no. variation
(COV)
I Plate size (mm) LOi 854 40t08
2 Plate thickness (mm) L 3.0 4to 8%
3 Web thickness (mm) 4 49 41t08%
4 Flange thickness (mm) ty 5.84 4 to 8%
5 Plate-out of plane zP0i 0.0 1.0t0 3.0
distortion (mm)
6 Web height (mm) L1ji 31.08 25t05%
7 Web tilting (mm) X2ji 0.0 02t00.5
8 Web bowing (mm) XBOi 0.0 0.1t00.2
9 Flange width (mm) L2ji 254 25t05%
10 Flange tilting (mm) 2210, Z2iL 0.0 0.2t00.5
11 Modulus of elasticity E 208000 4t08%
(MPa)
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Parametric Analysis Results

Variable Geometrical Variables Mean Variation Variation of | Effect on axial Effect on
no. value of standard strength ratio | coefficient of
coefficient deviation variation of
of variation strength
1 Plate size (mm) 854 4.0t08.0 High Medium/Low
2 Plate thickness (mm) 3.0 410 8% 0.12t0 0.24 Medium High
3 Web thickness (mm) 49 4108% 0.196 t0 0.392 Medium High
4 Flange thickness (mm) 5.84 4to0 8% 0.234 10 0.468 Medium High
5 Plate-out of plane 0.0 1.0t0 3.0 Low Medium/Low
distortion (mm)
6 Web height (mm) 31.08 25105% 0.77 to 1.54 Low Medium/Low
7 Web tilting (mm) 0.0 0.2t00.5 Low Medium/Low
8 Web bowing (mm) 0.0 0.1t00.2 High Medium/Low
9 Flange width (mm) 25.4 25t105% 0.635101.27 Low Medium/Low
10 Flange tilting (mm) 0.0 021005 Medium Medium/Low
11 Modulus of elasticity 208000 410 8% 8320 to 16640 Low None

(MPa)
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TEN GENERATED RANDOM VARIABLES:

WEB HEIGHT (LEVEL=1)
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WEB TILTING (LEVEL=1)
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WEB BOWING (LEVELS =8, 1, ead 1)
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TEN CENIRATED RANDOM VARIADLES:

PLANGE WIDTH (LEVEL-1)
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FLAMGE TILTING {LEVEL=-1)
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Modulus of Elasticity
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RECOMMENDATIONS FOR FUTURE WORK

Based on this study, the following recommendations for future work are provided:
« The feasibility of using the developed method for complex structures with multiple failure modes
needs to be investigated. The structures need to be selected such that methods for failure recognition
and classification as previously demonstrated can be developed.

« The effects of failure recognition and classification for continuum structures on reliability estimates
need to be studied.
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